Amorphous Silicon Core-shell Nanowire Solar Cells

نویسندگان

  • Jia Zhu
  • Yueqing Xu
  • Qi Wang
  • Yi Cui
چکیده

Nanostructures such as nanoparticles and nanowires have been demonstrated as powerful tools to improve light absorption[1-4], to enable low temperature process[5], to demonstrate multi-exciton generation[6], and to decouple the absorption depth and carrier diffusion length[7, 8]. Here we demonstrated the first amorphous silicon coreshell nanowire solar cells, which can be fabricated through a low temperature, scalable processes. A simple Schottky based nanowire device structure is used to demonstrate the concept[9]. The device demonstrated much higher short circuit current (>150%) compared to the control thin film device, because of improved carrier collection. A coreshell nanowire solar cells based on p-i-n configuration is also proposed to further increase the efficiency. It provides a viable pathway to solve the mismatch between carrier diffusion length and absorption depth in amorphous silicon and to dramatically improve the device performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Core-shell silicon nanowire solar cells

Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded...

متن کامل

Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires.

Nanowires have unique optical properties and are considered as important building blocks for energy harvesting applications such as solar cells. However, due to their large surface-to-volume ratios, the recombination of charge carriers through surface states reduces the carrier diffusion lengths in nanowires a few orders of magnitude, often resulting in the low efficiency (a few percent or less...

متن کامل

Study the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy

Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...

متن کامل

The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells

Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells hav...

متن کامل

Optical properties of crystalline-amorphous core-shell silicon nanowires.

The optical absorption in a nanowire heterostructure consisting of a crystalline silicon core surrounded by a conformal shell of amorphous silicon is studied. We show that they exhibit extremely high absorption of 95% at short wavelengths (λ < 550 nm) and a concomitant very low absorption of down to less than 2% at long wavelengths (λ > 780 nm). These results indicate that our nanowires do not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010